Hierarchical alignment of breast DCE-MR images by groupwise registration and robust feature matching.
نویسندگان
چکیده
PURPOSE Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) shows high sensitivity in detecting breast cancer. However, its performance could be affected by patient motion during the imaging. To overcome this problem, it is necessary to correct patient motion by deformable registration, before using the DCE-MRI to detect breast cancer. However, deformable registration of DCE-MR images is challenging due to the dramatic contrast change over time (especially between the precontrast and postcontrast images). Most existing methods typically register each postcontrast image onto the precontrast image independently, without considering the dynamic contrast change after agent uptake. This could lead to the inconsistency among the aligned postcontrast images in the precontrast image space, which will eventually result in worse performance in cancer detection. In this paper, the authors present a novel hierarchical registration framework to address this problem. METHODS First, the authors propose a hierarchical registration framework to deploy the groupwise registration for simultaneous registration of all postcontrast images onto their group-mean image and further aligning the group-mean image of postcontrast images onto the precontrast image space for final alignment of all precontrast and postcontrast images. In this way, the postcontrast images (with similar intensity patterns) can be jointly aligned onto the precontrast image for increasing their overall consistency after registration. Second, in order to improve the registration between the precontrast image and the group-mean image of the postcontrast images, the authors propose using the contrast-invariant attribute vectors to guide the robust feature matching during the registration. RESULTS Our proposed hierarchical registration framework has been comprehensively evaluated and compared with affine registration and widely used deformable registration methods in both pairwise and groupwise registration formulation. The experimental results on both real and simulated images show that our method can obtain not only more accurate but also more consistent registration results than any of all other registration algorithms. CONCLUSIONS The authors have proposed a novel groupwise registration method to achieve accurate and consistent alignment for breast DCE-MR images. In the future, the authors will further evaluate our proposed method with more clinical datasets.
منابع مشابه
Feature-based groupwise registration by hierarchical anatomical correspondence detection.
Groupwise registration has been widely investigated in recent years due to its importance in analyzing population data in many clinical applications. To our best knowledge, most of the groupwise registration algorithms only utilize the intensity information. However, it is well known that using intensity only is not sufficient to achieve the anatomically sound correspondences in medical image r...
متن کاملLongitudinal, intermodality registration of quantitative breast PET and MRI data acquired before and during neoadjuvant chemotherapy: preliminary results.
PURPOSE The authors propose a method whereby serially acquired DCE-MRI, DW-MRI, and FDG-PET breast data sets can be spatially and temporally coregistered to enable the comparison of changes in parameter maps at the voxel level. METHODS First, the authors aligned the PET and MR images at each time point rigidly and nonrigidly. To register the MR images longitudinally, the authors extended a no...
متن کاملRobust SIFT-Based Hierarchical Video Mosaicing for Endomicroscopy
We present a method to perform video mosaicing for endomicroscopy with two major improvements compared to the state of the art. First, instead of using individual images directly, we start by creating sub-mosaics from short video sub-sequences using iconic registration. The sub-mosaics are then considered for feature-based registration. Second, groupwise estimation is performed between all subm...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کاملA Unified Information-Theoretic Approach to Groupwise Non-rigid Registration and Model Building
The non-rigid registration of a group of images shares a common feature with building a model of a group of images: a dense, consistent correspondence across the group. Image registration aims to find the correspondence, while modelling requires it. This paper presents the theoretical framework required to unify these two areas, providing a groupwise registration algorithm, where the inherently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 1 شماره
صفحات -
تاریخ انتشار 2012